Limited Memory Bundle Method for Large Bound Constrained Nonsmooth Optimization
نویسنده
چکیده
1. Abstract Practical optimization problems often involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such large problems are restricted to certain meaningful intervals. In the report [Haarala, Mäkelä, 2006] we have described an efficient adaptive limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization. Although it works very well in numerical experiments it suffers from one theoretical drawback. Namely, it is not necessarily globally convergent. In this paper, a globally convergent variant of this method is proposed. In addition, some results from numerical experiments are given. 2.
منابع مشابه
Limited memory bundle method for large bound constrained nonsmooth optimization: convergence analysis
Practical optimization problems often involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such large problems are restricted to certain meaningful intervals. In the paper [Karmitsa, Mäkelä, 2009] we described an efficient limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization. Although this method wor...
متن کاملLimited memory interior point bundle method for large inequality constrained nonsmooth minimization
Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables with various constraints. In this paper, we describe a new efficient adaptive limited memory interior point bundle method for large, possible nonconvex, nonsmooth inequality constrained optimization. The method is a hybrid of the nonsmooth variable met...
متن کاملLMBM — FORTRAN Subroutines for Large-Scale Nonsmooth Minimization: User’s Manual
LMBM is a limited memory bundle method for large-scale nonsmooth, possibly nonconvex, optimization. It is intended for problems that are difficult or even impossible to solve with classical gradient-based optimization methods due to nonsmoothness and for problems that can not be solved efficiently with standard nonsmooth optimization methods (like proximal bundle and bundle trust methods) due t...
متن کاملGlobally convergent limited memory bundle method for large-scale nonsmooth optimization
Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of thousands of variables. In the paper [Haarala, Miettinen, Mäkelä, Optimization Methods and Software, 19, (2004), pp. 673–692] we have described an efficient method for large-scale nonsmooth optimization. In this paper, we introduce a new variant of this method and prove its global conve...
متن کاملSolving generation expansion planning problems with environmental constraints by a bundle method
We discuss the energy generation expansion planning with environmental constraints, formulated as a nonsmooth convex constrained optimization problem. To solve such problems, methods suitable for constrained nonsmooth optimization need to be employed. We describe a recently developed approach, which applies the usual unconstrained bundle techniques to a dynamically changing “improvement functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008